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Abstract

In graph theory, there are several properties of a graph, two of which are the
cluster coefficient and the average path length. In this thesis, we research the
variation in these two properties. In particular, for graphs of 100 vertices,
we research what lower and upper bounds these properties can achieve. We
describe these upper and lower bounds, and describe how these change under
a growing number of edges. Using these bounds, we calculate how many
different values these two properties can theoretically have. We use these
limits to construct an algorithm, which finds graphs with specific properties.
We deployed this algorithm on the DAS-3 and DAS-4 clusters, and plotted
the results in a scatterplot, showing the effect of the number of edges on the
two properties.
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Chapter 1

Introduction

Graphs are abstract representations of real life networks, with vertices to
abstract the described objects, and edges between them to denote the links
between the objects.

Vertex

Edge

Figure 1.1: Example of a graph of 4 vertices

Graphs come in a variety of forms, but in this thesis, only undirected,
unweighted, simple graphs are considered: all edges are equal, and if there
is an edge from α to β, the same edge also connects β to α. There is only
a single edge between two vertices, and no vertex has a loop. For notation
purposes, throughout this thesis we will denote the set of vertices for a graph
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as V , and the size of the set |V | as v. Similarly, a graph with a set of E
edges has a total of |E| = e edges. We will use G for a graph of 100 vertices,
and an undetermined amount of edges. All considered graphs are connected,
all vertices have at least one edge connecting them to the graph. To be
connected, a graph of V vertices must have at least v − 1 edges. A fully
connected graph, where every vertex is connected to all other vertices, has
the following number of edges e:

e =
v(v − 1)

2
(1.1)

Throughout the thesis, we will consider labeled graphs, with the vertices
labeled with lower case Greek letters. Graphs with differently labelled edges
are considered nonisomorphic in this thesis, even if they correspond to the
same unlabeled graph; for example, the two graphs in Figure 1.2 are not
isomorphic.

α β γ

(a) Graph α− β − γ

α γ β

(b) Graph α− γ − β

Figure 1.2: Two non-isomorphic graphs

Graphs in real life: Graphs are used in various disciplines for the purpose
of modeling. For example, in computer science graphs are used to represent
different types of computer networks, in medicine to describe the human
brain, in sociology to describe social networks and in biology to describe
metabolic networks and foodwebs.

Mark Newman has written a thorough review of the daily occurence of
graphs in his article The structure and function of complex networks [1]. Since
this, the field of graphs has enjoyed tremendous interest [2] [3] [4] [5] [6]. The
rise of social networking services like Facebook and Google+ has led to an
increased interest in graphs, and their use in biology and other fields has
grown even larger.

1.1 Structural properties of graphs

There are three common properties of a graph: cluster coefficient, average
path length and degree distribution. In this thesis we will focus on the cluster
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Figure 1.3: Example on how to calculate cluster coefficient.

coefficient and average path length.

1.1.1 Cluster Coefficient

One of the two values used in determining the configuration and quality of a
graph is the cluster coefficient. The cluster coefficient defines how well con-
nected vertices are among each other. The cluster coefficient has definitions
for a single vertex, and for an entire graph.

The cluster coefficient CCi for a vertex Vi is the ratio of the number of
existing edges eexi over the number of edges possible epos between vertices
adjacent to Vi.

CCi =
eexi
epos

(1.2)

So, for a graph of five vertices, as shown in Figure 1.3, the cluster co-
efficient of the central vertex can be calculated in the following way: three
existing edges, divided by a total of six possible edges, and by Equation 1.2
it follows that the cluster coefficient is 1

2
.

This defines the cluster coefficient for any vertex that has two or more
edges. There are also graphs with a vertex that has only one edge, e.g., see
Figure 1.4. In this example, all black vertices have only one edge, and are
thus connected to a single neighbor. Both the number of existing edges eexi,
as well as the number of possible edges epos, between that neighbor, is zero.
This leads to a cluster coefficient of 0

0
, which is formally undefined. We will

define a cluster coefficient value for such a vertex, but we can only do this,
after introducing the cluster coefficient for an entire graph.

The cluster coefficient, CC, for an entire graph is the average of all cluster
coefficients of the individual vertices of a graph. This gives us the following
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Figure 1.4: Hub graph

formula:

CC =
1

v

v∑
i=1

CCi (1.3)

We define the cluster coefficient of a vertex with less than two edges to
be zero, and we will do so for two reasons:

1. We would like two graphs of equal v and e to be comparable in their
cluster coefficient, independent of the degree of their vertices. If a
vertex with a single edge had an undefined cluster coefficient, and was
not taken into account for the cluster coefficient of the entire graph,
this would produce counterintuitive results, as shown in Figure 1.5.
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(a) 12 vertices, 12 out
of 66 possible edges

(b) 3 vertices, 3 out of
3 possible edges

Figure 1.5: If only the blue vertices were taken into account for the
CC, both graphs would have a CC of 1.

2. By keeping the cluster coefficient for vertices with degree smaller than
2 undefined, the removal of specific edges from a graph could raise
its cluster coefficient. In our opinion, raising the cluster coefficient by
removing edges is intuitively implausible and undesirable, as shown in
Figure 1.6b.

This is a natural choice, and it has also been used for analysis of networks
in general (e.g., [7, 8]) as well as for the complex systems (e.g., [9, 10, 11]).
This special case is implemented in the commonly used NetworkX library of
Python in the CC algorithm [12].

Now that we have the definition for the cluster coefficient for a vertex
with a single edge, we can now define the cluster coefficient:

Definition 1.1.1

• The cluster coeffcient of a vertex is 0 if it has degree smaller than 2.

• A vertex φ with degree n is connecting n vertices to vertex φ. The
cluster coefficient of vertex φ is the number of edges connecting the n
vertices with each other, divided by the potentional number of edges
between the n vertices, and can be calculated with Equation 1.2.

• The cluster coefficient of a graph is the average of all cluster coefficient
of its vertices, calculated by Equation 1.3.

5



(a) With 11 vertices,
this graph has a CC of
0.78

(b) With one edge less,
this graph has a CC of
0.7

Figure 1.6: Defining the cluster coefficient as 0 for a vertex with a single
edge

1.1.2 Average Path Length

The average path length of a graph G is the shortest path length between
two vertices in that graph, averaged over all pairs of vertices.

Definition 1.1.2 For a single vertex, the average path length of a vertex φ
to the other v − 1 vertices, is defined as follows: the average of the sum of
the shortest paths between a single vertex, and all other vertices (with size
of v − 1) in the graph. For ∆(φ, ψ) being the distance between vertex φ and
vertex ψ, the average path length for vertex φ can be calculated as:

APLφ =
1

v − 1

v−1∑
ψ=1

∆(φ, ψ) (1.4)

For the graph shown in Figure 1.7, the average path length of the black
vertex is calculated by Definition 1.1.2, 3

2
.

2

1

Figure 1.7: Example of how to calculate the average path length.
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Definition 1.1.3 For the entire graph, the average path length for a graph
of v vertices is the sum of the individual average path lengths of each vertex.

APL =
1

v

v∑
i=1

APLi (1.5)

For example, the average path length of the graph in Figure 1.7 is thus 4
3
.

Alternatively, the average path length of the same graph can be computed
as depicted in Figure 1.8. The distance between any two adjacent vertices is
1, while the distance between the extreme vertices is 2. Adding all distances
together, and dividing that sum by v(v−1) will also produce the same average
path length of 4

3
. So following the example of Figure 1.8:

(1 + 2) + (1 + 1) + (1 + 2)

3 · (3− 1)
=

8

6
=

4

3

1 1 1

12 2

Figure 1.8: Individual distances from one vertex to another

1.1.3 Statespace

The combination of the cluster coefficient and the average path length can
also be defined as a state of a graph, as a graph always has a cluster coefficient
and an average path length. A graph with a fixed number of vertices and a
set number of edges has a distinct number of states. Each one of these states
represents one or more graphs with a specific cluster coefficient and a specific
average path length.

All possible states of a graph with v vertices and e edges form the states-
pace for such a graph, distributed between the upper and lower bounds for
the cluster coefficient and average path length for G(v, e), and contains all
possible combinations of cluster coefficient and average path length values a
graph can have. All of these states can be projected onto a scatterplot. A
scatterplot depicts states for which there exists at least one graph with such
a state.

7



Every (red) point in the scatterplot represents an existing graph with
a specific combination of cluster coefficient and average path length. Each
point depicts one or more graphs, as isomorphic graphs will all be represented
in a single point in the scatterplot. The scatterplot does not show how many
graphs are found for any depicted point, and some locations in the statespace
may represent combinations of cluster coefficient and average path length for
which no graph G of v vertices and e edges is known to exist.

Figure 1.9 shows a sample scatterplot for a graph of 100 vertices and 300
edges.

Figure 1.9: Sample scatterplot for a graph of 100 vertices and 300 edges

As mentioned before, a graph with v vertices and e edges has a statespace,
which can be depicted in a scatterplot. A graph with another number of
edges, not equal to e, will have another statespace, and is depicted by another
scatterplot. This will be shown in this thesis.

1.2 Scope of the thesis

In this thesis, the statespace of graphs with 100 vertices will be explored, for
100, 150, 200, . . . , 4950 edges. Firstly, we’ll identify upper and lower bound-
ary values for the cluster coefficient and average path length for connected,
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undirected graphs, and their corresponding properties. Second, we’ll explore
the space between these boundaries by iteratively modifying connection con-
figurations of the boundary cases to determine which combinations values of
cluster coefficient and average path length can be attained. Although the
method is not exhaustive, it gives a valuable insight in the variability of clus-
ter coefficient and average path length and values for which graphs actually
exist. For every number of edges e, we present a scatterplot of the values
found in the corresponding statespace, resulting in 98 scatterplots, one for
each value of e ∈ {100, 150, 200, . . . , 4950}.
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Chapter 2

Theoretical Limits

To understand the size and shape of the statespace, we have to specify the
upper and lower bounds on the values for both the average path length (APL)
and the cluster coefficient (CC).

2.1 Average Path Length

We first compute the upper and lower bound on the values of APL and CC
for graphs G = 〈V,E〉, given |V | = v and |E| = e.

2.1.1 Minimum Average Path Length: Star Graph

The lower bound on the value of the APL for a graph with v vertices and
e edges equals 1. In such a graph any two vertices can reach each other in
only one hop. In fact, this is only possible in a fully connected graph, which
has exactly v·(v−1)

2
edges.

For graphs with less than v·(v−1)
2

edges, the lower bound on the APL is
actually greater than 1 for the following reason: the shortest path between
vertices φ and ψ, ∆(φ, ψ) is 1 if and only if there is an edge eφψ ∈ E between
them. If there is no such edge, the shortest possible path length ∆(φ, ψ) is
equal to 2.

A graph with v − 1 edges has the minimal APL, if it is constructed as
follows: one (central) vertex is connected to all other vertices, each by a
single edge. This construction is likened to a star, or a hub-and-spokes ; see
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the example in Figure 2.1a. The APL of such a graph is:

APLmin = 2− 2(v − 1)

v(v − 1)

= 2

(
1− 1

v

)
(2.1)

If more edges are added, each of these added edges Eφψ will reduce a
shortest path length ∆(φ, ψ) of 2 to a shortest path length ∆(φ, ψ) of 1. The
remaining edges, can be distributed among the peripheral vertices, and each

of these added edges will reduce the APL by 2

(
1

v
· 1

v − 1

)
, to an overall

APL of:

APLstar = 2

(
1−

(
1

v
· e

v − 1

))
(2.2)

This is shown in Figure 2.1, where eight additional edges are added to
the graph in Figure 2.1a, resulting in the graph on Figure 2.1b and and,
subsequently, more edges are added until the graph reaches an APL of 1, as
shown in Figure 2.1c and 2.1d.

(a) 8 edges, APL = 1.78 (b) 16 edges, APL = 1.56

(c) 20 edges, APL = 1.44 (d) 36 edges, APL = 1.00

Figure 2.1: Examples of Star-graphs
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For a graph G and an increasing number of edges, the APL will decrease
linearly, as shown in Figure 2.2.

0.5

1

1.5

2

2.5

99 500 1000 1500 2000 2500 3000 3500 4000 4500 4950

A
P

L

Edges

Minimum APL

Figure 2.2: The development of the minimum APL over an increasing number
of edges

2.1.2 Maximum Average Path Length: Tail graph

A graph with v vertices has the greatest APL possible if its vertices are
arranged in a aline, as shown in Figure 2.3. However, such a line can only
be constructed for a graph of v vertices and v− 1 edges. If a graph has more
edges, it needs to be wired in such a way, that there still exists a long line,
or tail, of vertices to increase its APL.

Figure 2.3: The graph with 7 vertices and the highest APL

In 2003, Lovejoy and Loch [13] introduced their Clique Plus Path-graph,
(CPP-graph), a graph that has such a tail, and is believed to have, in specific
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Gatekeeper vertex

Path

Clique

Figure 2.4: A Clique Plus Path graph, connected at the gatekeeper vertex

circumstances, the maximal APL. It consists of a densely connected group
of vertices (or clique) and a tail, which is called a path in their paper. The
tail is connected at the gatekeeper vertex to the clique, as demonstrated in
Figure 2.4. The gatekeeper vertex is part of both the clique and the tail.

The idea behind the CPP-graph is that, when a graph has more than v−1
edges, it can, under certain circumstances, use a subset of the tail vertices to
form a clique. Thus, graphs with v vertices and more than v−1 edges can be
concstructed to increase their APL. The APL increases due to the vertices
in the clique subgraph of such a CPP with the tail subgraph of the graph.

The APL of a CPP-graph cannot be increased by rewiring any single
edge, but is highly dependent on the number of edges required to make
the clique. In other wordsm the construction of a CPP graph restricts the
number of edges the graph can have (i.e. for a clique subgraph and a tail
subgraph). To relax this restriction, we introduce the Tail-graph, wherein
a clique is connected to a long tail of vertices by a joint vertex. The joint
vertex is connected by joint edges to the clique, as shown in Figure 2.5.
This configuration eliminates the condition that the number of edges must
be specific, to create both a clique and a tail. With any number of edges

between v − 1 and
v(v − 1)

2
, a Tail-graph can be constructed.

The Tail-graph G(V,E) consists of 3 subgraphs, with the following sets
of vertices and edges:

• Clique: Vc vertices and Ec edges. These are colored red in Figure 2.5.

• Joint: a single vertex Vj, with Ej edges connecting it to the clique and

13



Joint vertex

Tail

Clique

Joint edges

Figure 2.5: A Tail graph, connected at the joint vertex

a single edge to the tail. These are colored brown in Figure 2.5.

• Tail: Vt vertices and Et edges. These are colored blue in Figure 2.5.

In order to compute the APL of a Tail graph, we need to provide the
cardinality of the vertex and edge sets, and calculate the APL of each of
three Tail subgraphs. We will start with the cardinalities, by showing how a
Tail-graph can be constructed.

For a graph of v vertices and e edges:

1. Construct a line of v vertices and v−1 edges. If the number of edges is
larger then v − 1, e− v − 1 = el edges are left to be used in the clique
and the joint-edges.

2. These el edges are used to form a clique of vc vertices. A clique of vc
vertices uses vc vertices from the tail, as well as vc − 1 edges from the
tail, to form the clique. Figure 2.6 shows the vc vertices in red, using
vc−1 blue edges from the tail subgraph to construct part of the clique.

Figure 2.6: A Tail graph, using vc and vc − 1 edges from the tail.
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3. To determine vc, we find the maximum number of vertices vc where:

el ≥
1

2
vc(vc − 1)− (vc − 1)

el ≥
1

2
(vc − 1)2 (2.3)

Hence, up to
1

2
(vc − 1)2 = ec edges are used in this clique. If el = ec,

the Tail-graph is also a CPP-graph.

4. Any remaining edges are the ej joint edges, in addition to a single edge
from the tail:

ej = el − ec + 1 (2.4)

This is also shown in Figure 2.7, with the remaining edge colored red,
and the edge from the tail colored blue. Both of these edges connect
the clique with the blue joint-vertex.

Figure 2.7: A Tail graph, with 2 joint edges.

5. The number of vertices in the tail, vt, is the number of vertices of
the graph, minus the number of vertices in the clique, minus the joint
vertex:

vt = v − vc − 1 (2.5)

This also determines the number of edges in the tail, as et = vt − 1.

Note that, v = vc + vj + vt, but e = ec + ej + et + 1. The single remaining
edge connects the joint vertex to the tail, and is colored black in Figure 2.5.

With the cardinalities of the sets determined, we can now calculate the
APL of the Tail-graph. To do so, all individual paths of the vertices in the
Tail subgraphs are added together, and then averaged. We observe, that even
though the path between vertices ∆(φ, ψ) = ∆(φ, ψ), this will not result in a

15



greater path length, as in the end the result is divided for by all vertices, so
∆(φ, ψ) + ∆(φ, ψ)

2
. Calculating the path lengths of the Tail subgraphs can

be done in the following way:

• From the clique-vertices to other clique-vertices, the joint vertex and
the tail vertices. The clique has vc vertices and ec edges:

– Any vertex in the clique is connected to all the other vertices in
the clique by a path of length 1. Therefore, the sum of the APLs
of the vertices in the clique, to other vertices in the clique, is:

1 · vc · (vc − 1) (2.6)

This coincides with the maximum number of edges from Defini-
tion 1.1.

– The clique also has connections to the joint, with ej paths of a
length 1, and vc − ej paths of a length 2:

ej + 2(vc − ej) (2.7)

This is shown in Figure 2.8. The clique has ej vertices (colored
blue) which have a path of length 1 to the (yellow colored) joint
vertex. (The edges for these paths are also colored blue.) The
remaining vc − ej vertices in the clique (colored red) do not have
a path of length 1 to the joint vertex. These remaining vc − ej
vertices do have a path of length 2, by having a path of length 1 to
a (blue) vertex, which has a path of length 1 to the (yellow) joint-
vertex. Adding the lengths of these two paths together produces
a path with a length 2 for the (red) vertices.

1 2 3

Figure 2.8: A Tail graph, with colored vertices to show the connections
for the clique vertices. The numbers above the black vertices show the
path length to the joint vertex (colored yellow).
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– All vertices in the clique also have paths to the vertices in the
tail, and all of these paths traverse the joint-vertex. This means
that the length of the path between the clique vertices and the
tail vertices is the same as the length of the path between the
clique vertices and the joint vertex, multiplied by the number of
tail vertices, and the path between the joint vertex and the tail
vertices. As Figure 2.8 shows, this is a sum of the number of

tail subgraph vertices:
vt∑
i=1

i. Thus, we combine the product of

Formula 2.7 and the number of tail vertices with the sum of the
tail subgraph vertices:

vt(ej + 2(vc − ej)) + vc

vt∑
i=1

i (2.8)

This yields the following equation for the APLs of the vertices in the
clique subgraph of the Tail-graph:

APLclique =
1

v(v − 1)
·

(
vc(vc−1)+(vt+1)(ej +2(vc−ej))+vc

vt∑
i=1

i

)
(2.9)

• Joint: The joint vertex has paths to the clique subgraph, and to the
tail subgraph vertices.

– For the vertices in the clique, there are ej paths of length 1 between
the joint-vertex and the clique, and vc−ej paths of length 2. These
are the same paths as explained in Equation 2.7:

ej + 2(vc − ej)

– For paths to the vertices in the tail, the path length is the sum of
the vertices in the tail:

vt∑
i=1

i (2.10)

This yields the following equation for the APL of the joint vertex:

APLjoint =
1

v(v − 1)

(
ej + 2(vc − ej) +

vt∑
i=1

i

)
(2.11)

• Tail: the tail vertices of the graph have paths to the clique, to the joint,
and to the other tail vertices.
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– For all paths between any pair of tail subgraph vertices, the av-
erage paths are a sum of all such paths, leading to the following
effect (which was explained previously in Figure 1.8.) Let us ex-
plain this on an example of six vertices, as shown in Figure 2.9.

α β γ δ ε ζ

∆(α, β) = 1

∆(α, γ) = 2

∆(α, δ) = 3

∆(α, ε) = 4

∆(α, ζ) = 5

∆(β, α) = 1

∆(β, γ) = 1

∆(β, δ) = 2

∆(β, ε) = 3

∆(ζ, ε) = 4

∆(γ, β) = 1

∆(γ, δ) = 1

∆(γ, α) = 2

∆(γ, δ) = 2

∆(γ, ζ) = 3

∆(δ, γ) = 1

∆(δ, ε) = 1

∆(δ, β) = 2

∆(δ, ζ) = 1

∆(δ, α) = 3

∆(ε, δ) = 1

∆(ε, ζ) = 1

∆(ε, γ) = 2

∆(ε, β) = 3

∆(ε, α) = 4

∆(ζ, ε) = 1

∆(ζ, δ) = 2

∆(ζ, γ) = 3

∆(ζ, β) = 2

∆(ζ, α) = 1

Figure 2.9: Example to show the path length of vertices in the tail
subgraph

Let us sum the individual steps. Each new row of paths to another
vertex grows in a specific fashion, with v = 6:

α β γ δ ε ζ Sum Formula
1 1 1 1 1 1 6 v = 1v + 0
2 1 1 1 1 2 8 v + 2 = 1v + 2
3 2 2 2 2 3 14 v + 6 = 2v + 2
4 3 2 2 3 4 18 v + 12 = 2v + 6
5 4 3 3 4 5 24 v + 18 = 3v + 6

Note that, in the right hand side of the formula, the factor of
v increases every odd step, while the second summand increases
every even step. This yields the following formula:

vt−1∑
i=1

⌈ i
2

⌉
vt +

b i
2c∑
j=1

2j

 (2.12)
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– For the paths from the tail vertices to the joint vertex, Formula 2.10
applies again:

vt∑
i=1

i

– For the paths to the vertices in the clique, Formula 2.8 applies
again:

vt(ej + 2(vc − ej)) + vc

vt∑
i=1

i

Thus, for the tail vertices combined, this produces the following for-
mula:

APLcombined =
1

v(v − 1)

vt−1∑
i=1

⌈ i
2

⌉
vt +

b i
2c∑
j=1

2j

+

vt∑
i=1

i+ vt(ej + 2(vc − ej)) + vc

vt∑
i=1

i

)
(2.13)

Finally, putting all terms of Formula 2.9, Formula 2.11 and Formula 2.13
together results in the following formula:

APLtail =
1

v(v − 1)
·

(
vc(vc − 1) + (vt + 1)(ej + 2(vc − ej)) + vc

vt∑
i=1

i+

ej + 2(vc − ej) +
vt∑
i=1

i+
vt−1∑
i=1

⌈ i
2

⌉
vt +

b i
2c∑
j=1

2j

+

vt∑
i=1

i+ vt(ej + 2(vc − ej)) + vc

vt∑
i=1

i

)
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=
1

v(v − 1)
·

(
vc(vc − 1) + (2vt + 2)(ej + 2(vc − ej)) + (2vc + 2)

vt∑
i=1

i+

vt−1∑
i=1

⌈ i
2

⌉
vt +

b i
2c∑
j=1

2j




=
1

v(v − 1)
·

(
v2
c + 2vt(2vc − ej) + 3vc − 2ej + (2vc + 2)

vt(vt + 1)

2
+

vt−1∑
i=1

⌈ i
2

⌉
vt +

b i
2c∑
j=1

2j




(2.14)

We observe that, for a graph G and an increasing number of edges, the
maximal APL of the Tail-graph decreases exponentially, while the minimal
APL decreases linearly, as shown in Figure 2.10.
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Figure 2.10: The development of the maximum APL and minimal APL with
an increasing number of edges
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2.2 Cluster Coefficient

Graphs, referred in this thesis as Distributed Map and JEB-graphs, are
graphs with the minimal and maximal CC, respectively. We say that a graph
has minimal (maximal) CC, if there is no other graph with lower (higher)
CC for a given number of vertices and edges, respectively.

2.2.1 Minimal Cluster Coefficient: Distributed Map
Graph

We first explain the lower bound on the value of the CC.
For graphs with v vertices and v − 1 edges, all graphs have a CC 0.
For graphs with v vertices and v − 1 < e ≤ 1

4
v2 edges, Takahashi [5] has

shown that there are graphs with a CC 0. Such a graph, G(V,E) with v
vertices and e edges, can be constructed in the following way:

1. Divide the set of V vertices into two sets, L for the left set, and R
for the right set. Both subsets are of equal size when the number of
vertices, v, are even, and are of unequal size, otherwise.

2. Every vertex from set L has to be connected to all the other vertices
from set R. If l and r are used to indicate the size of set L and set
R respectively, then the total number of edges wired in such a way is
equal to l · r, or 1

2
v · 1

2
v = 1

4
v2.

A graph with the edges wired in an even distribution between the subsets
L and R, is shown in Figure 2.11.

Figure 2.11: A graph of 6 vertices with the CC 0 and the largest number of
edges for such a CC.

This means that, for graphs of 100 vertices, a wiring of edges can be found
with the CC 0, and the number of edges can be 99 or larger, but smaller than
2501.
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When the number of edges in a graph is larger than 1
4
v2, its CC can no

longer be 0. Any edge added to subset L or R will impact two vertices from
the set in which it was added, and all vertices from the opposite set. This is
shown in Figure 2.12, where one (blue) edge is added between vertex α and
β, which also changes the cluster coefficients of vertices δ, ε and ζ.

α

β

γ

δ

ε

ζ

Figure 2.12: One added edge impacts 5 vertices.

To find the graph with the lowest CC, we have to minimize the increase
in the CC when edges are added to such a graph. This can be done by
maximizing the number of edges a single vertex has from one of the subsets.
Because the formula of the CC is a fraction, the effect of adding a single edge
to the numerator part is smaller when the denominator part of the fraction
is larger; e.g. for any n, d 6= 0, x = n+1

d+1
− n

d+1
, y = n+1

d
− n

d
, x < y.

As a reminder, the numerator of the CC is the number of existing edges
between the adjacent vertices, while the denominator is the total number
of possible edges. The denominator increases when the degree of a vertex
increases, and thus, maximizing the degree of a vertex will minimize the
effect of adding an edge between the vertices adjacent to that vertex. This
increase of the degree is done by connecting a vertex from the subset L(R)
to all other vertices in the subset L(R), respectively.

Every vertex of the subset L is already connected with all vertices in the
subset R, and vice versa. This forces us to alternate the maximization of
the degree of vertices. First a vertex from the subset L needs its degree
maximized, then the degree of a vertex from subset R, then the subset L,
and so on. Otherwise, one of the two subsets would eventually get vertices
with the CC 1, thus actually maximizing the CC, instead of minimizing it.

To demonstrate the effect of adding edges in such a fashion to a graph
with the CC 0 and 1

4
v2 edges, consider the graph in Figure 2.11. We will

now describe the effects (on the CC) of adding a new edge to such a graph.
We call such graph a Distributed Map-graph (DM-graph). We do not give a
proof that, for a graph with more than 1

4
v2 edges, the value of the CC of the
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DM-graph is the theoretical lowest bound. Note that, even with extensive
rewiring of all DM-graphs, we never found a graph with a smaller CC, with
the same number of edges.

For example, let us add an edge between two vertices in the subset L. It
will impact two vertices, α and β, from subset L, and all the vertices from
the subset R, which is shown in Figure 2.13a.

α

β

γ

δ

ε

ζ

(a) DM graph with 1
added edge

α

β

γ

δ

ε

ζ

(b) DM graph with 2
added edges

α

β

γ

δ

ε

ζ

(c) DM graph with 3
added edges

α

β

γ

δ

ε

ζ

(d) DM graph with 4
added edges

α

β

γ

δ

ε

ζ

(e) DM graph with 5
added edges

α

β

γ

δ

ε

ζ

(f) DM graph with 6
added edges

Figure 2.13: DM graph with added edges

• Vertices α and β have its CC increased by 2r
r(r−1)

. That is, both vertices
have four vertices adjacent to them: α has the vertices β, δ, ε and ζ,
and β has α, δ, ε and ζ. Between the adjacent vertices of α, there are
six possible edges. However, only the three (red) edges exist. The same
applies for vertex β, which only has the three (purple) edges. This gives
both of the (blue) vertices a CC 3

6
.

• Vertex γ in L, without a new edge, has a CC 0. The vertices adjacent
to γ do not have any edges between them, they are not interconnected.
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• For the subset R, the CC is increased by 2·1
l(l−1)

. Each (red) vertex has

three adjacent vertices (vertices α, β and γ) from subset L, but only
one edge exists between them, between vertices α and β. This gives
each of the (red) vertices the CC 1

3
.

Table 2.1, also shows the CCs for all the individual vertices.

Vertex Neighbors Edges between neighbors CC
α β, δ, ε, ζ βδ, βε, βζ 2·3

4·3 = 3
6

β α, δ, ε, ζ αδ, αε, αζ 2·3
4·3 = 3

6

γ δ, ε, ζ - 0
δ α, β, γ αβ 2·1

3·2 = 2
6

ε α, β, γ αβ 2·1
3·2 = 2

6

ζ α, β, γ αβ 2·1
3·2 = 2

6

Table 2.1: CC of individual vertices with one added edge

Hence, by adding a single edge, the CC of the DM-graph is now 1
6
· (3

6
+

3
6

+ 0 + 2
6

+ 2
6

+ 2
6
) = 1

6
· 12

6
= 2

6
, and this is the smallest possible increment.

To continue with the example, we will now add a second edge. This edge
has to be added to one of the two vertices from subset L. This is shown in
Figure 2.13b. The vertex that is now adjacent to α is labeled γ, and is shown
in brown color. Then:

• The CC of α is increased by 2·1
(r+1)(r+2)

. This increase of the CC is
smaller, compared to the CC of the graph with a new edge between β
and γ. Such a new edge would have resulted in an increase of the CC
by 2 · 2r

r(r−1)
.

• The CC of β remains 3
6
.

• The CC of γ is increased by 2·2
r(r−1)

, and is now 3
6
.

• The CC of each vertex of the subset R is increased by 2·1
l(l−1)

, to a total

of 2·2
l(l−1)

.

So, the CC of α is 6
10

. Since α is now connected to all other vertices, its
CC will linearly increase with every edge added to the graph. This is, for
this vertex, the smallest possible increase of CC.

We say that, whenever a vertex is adjacent to all other vertices in the
graph, it not only belongs to the subset L or R, but also to the subset M .
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Vertex Neighbors Edges between neighbors CC
α β, γ, δ, ε, ζ βδ, βε, βζ, γδ, γε, γζ 2·6

5·4 = 6
10

β α, δ, ε, ζ αδ, αε, αζ 2·3
4·3 = 3

6

γ α, δ, ε, ζ αδ, αε, αζ 2·3
4·3 = 3

6

δ α, β, γ αβ, αγ 2·2
3·2 = 4

6

ε α, β, γ αβ, αγ 2·2
3·2 = 4

6

ζ α, β, γ αβ, αγ 2·2
3·2 = 4

6

Table 2.2: CC of individual vertices with two added edges

E.g. vertex α is adjacent to vertices β, γ, δ, ε and ζ, and vertex α is now also
in subset M .

The CC of the entire graph is now 1
6
· ( 6

10
+ 3

6
+ 3

6
+ 4

6
+ 4

6
+ 4

6
) = 3

5
. By

adding a single edge, the CC of the entire graph is increased by 8
30

, from 2
6

to 3
5
.

We again continue the example, and add another edge. Similair to the
vertices of the subset L, we now add edges to a single vertex in the subset R.
We will add an edge being between two vertices in the subset R, the vertices
ε and ζ in Figure 2.13c.

• Like vertices α and β, both vertices ε and ζ have four neighbors (another
blue vertex and the red vertices). However, in contrast to Figure 2.13a,
there are more edges: the three edges from both ε and ζ towards α, β
and γ, and the two edges added to subset L, with a total of 3 + 2 = 5
edges. Thus, both vertices ε and ζ now have the CC 5

6
.

• The remaining vertex δ keeps its CC 2
3
.

• Vertices α, β and γ are also affected by this added edge. Vertex α now
has the CC 7

10
, as it is in subset M , and any extra edge will affect its

CC.

• Vertices β and γ have their CC increased to 4
6
.

Thus, the CC of the resulting graph, is 1
6
· ( 7

10
+ 2(4

6
) + 2(5

6
) + 4

6
) = 131

180
.

Three remaining edges can be added, and each will increase the CC in
the same way. All vertices in the set M are affected, all vertices from the
opposite subset are affected, and all vertices that have the new edge attached
are affected. By now, any added edge will affect most other vertices in the
graph. This is shown in Figures 2.13d-2.13f.

In fact, the DM-graph is the graph with the smallest possible CC, because
it has as many vertices as possible in the subset M .This ensures that any
edge that is added will have the smallest possible increase in CC.
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Vertex Neighbors Edges between neighbors CC
α β, γ, δ, ε, ζ βδ, βε, βζ, γδ, γε, γζ, εζ 2·7

5·4 = 7
10

β α, δ, ε, ζ αδ, αε, αζ, εζ 2·4
4·3 = 4

6

γ α, δ, ε, ζ αδ, αε, αζ, εζ 2·4
4·3 = 4

6

δ α, β, γ αβ, αγ 2·2
3·2 = 4

6

ε α, β, γ αβ, αγ, αδ, βδ, γδ 2·5
3·2 = 5

6

ζ α, β, γ αβ, αγ, αζ, βζ, γζ 2·5
3·2 = 5

6

Table 2.3: CC of individual vertices with three added edges

The CC of a DM-graph can be formulated, but it essentially is a formula
for counting added edges. We therefore refer to the formula and its explana-
tion in Addendum B. Figure 2.14 shows the increase of the CC for a growing
number of edges.
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Figure 2.14: The development of the minimum CC for different number of
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2.2.2 Maximal Cluster Coefficient

The maximal CC of a graph is 1. Such a graph is fully connected, and it
has (according to Equation 1.1) emax = v(v−1)

2
edges. For a graph with fewer

edges than that, the CC 1 can not be achieved.
Note that the CC 1 for an entire graph can only be achieved if all vertices

have an individual CC 1 (according to Equation 1.3). When a graph has
fewer edges than emax, the graph can not have the CC 1. The greatest CC
a graph of v vertices and less than emax edges can have, is a CC > v−1

v
. A

graph has such a CC when v− 1 vertices have an individual CC 1, and when
the remaining vertex has a CC that is as great as possible. This results in

the CC >
v − 1

v
, or in the case of the graph G, a CC >

99

100
.

Such a CC can be constructed in the following way:

• One central vertex, connected to all other vertices; this is a graph with
minimal APL, and is a Star-graph.

• All other vertices are connected in cliques, thereby making every vertex
in such a clique to have the CC 1.

This forms a so called JEB-graph, shown in Figure 2.15. Note that JEB-
graphs are a subclass of the Star-graphs, and have the minimal APL.

Figure 2.15: A JEB-graph of 8 vertices with the CC 0.905

Since the central vertex is connected to all the other vertices, its CC has
in the nominator the maximum number of connections for a graph of v − 1
edges.

CCmax =
1

v
·
(

2(e− v + 1)

(v − 1)(v − 2)
+ v − 1

)
(2.15)

27



The term v − 1 in Formula 2.15 signifies the CC of the vertices in the
cliques, and the fraction is the CC of the central vertex.

The existence of a JEB-graph depends on the number of edges, and the
possibility to form cliques with those edges. This is not possible for all graphs
of 100 vertices. The smallest number of edges, required to construct a JEB-
graph, is 150. This JEB-graph has a specific number of wirings, which is
shown in Table 2.4. Note that the JEB-graph also has a central vertex, with
edges to all 99 other vertices.

Cliques and Edges per Total
vertices per clique clique edges

48 cliques 1 48
of 2 vertices

1 clique 3 3
of 3 vertices

Table 2.4: The configuration for a JEB-graph of 150 edges

For the number of edges < 150, another wiring of the edges is needed.
Again, the number of vertices with the CC 1 is maximized, but without a
central vertex connecting every other vertex. Instead, an almost-clique is
formed, where one of the vertices of the clique subgraph serves as a bridge
between the clique and the rest of the graph. All vertices, except the con-
necting (bridge) vertex, have the CC 1. The vertex connects the clique to

the rest of the graph has a CC <
v − 1

v
, typically

vc − 1

vc
. An example of

such a graph can be seen in Figure 2.16.

Figure 2.16: A graph of 8 vertices, 8 edges and the maximum CC 0.333
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Combining both the JEB-graphs and the almost-clique graphs results in
the plots of Figure 2.17, showing the growth of the CC under a growing
number of edges.

Figure 2.17: The development of the maximal (and minimal) CC with an
increasing number of edges
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Chapter 3

Statespace

Now that the limits of the statespace are identified, we can determine the
number of states in the statespace itself, by determining the number of pos-
sible values of the CC and the APL for G.

3.1 Resolution

To determine the total number of possible states, we need to derive the
number of possible values for the CC and APL, in G.

3.1.1 Cluster Coefficient

As Definition 1.1.1 states, the CC of a graph G is defined by the CC of its
vertices, which are, in turn, defined by the number of existing edges between
its neighboring vertices. The degree of a single vertex in a connected graph of
v vertices ranges in [1, v−1]. This means that the CC of a vertex is always a

fraction with a nominator of at least 1, and is at most
(v − 1)(v − 2)

2
. Thus,

for G, with a1, a2, . . . a99 being the number of fractions of that particular
nominator, its CC is defined as:

CC =
1

100

(a1

1
+
a2

3
+
a3

6
+ . . .+

a99

4851

)
(3.1)

Finding the lowest common denominator of these 99 fractions is a trivial
exercise: it is 1

3.49·1040 . The CC of each vertex in G has such a lowest common
denominator. This means, that the difference between any two CC values is

at least 1
100
· 1

3.49·1040 = 1
3.49·1042 . This value is the smallest difference between

any two CC values.
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Therefore the upper limit for possible, distinct CC values for G is the
inverse of the smallest possible difference, i.e. 3.49 ·1042. This does not mean
that there are 3.49 · 1042 actual graphs with a distinct CC value, but it does
place an upper limit on the theoretical number of possible CC values. We
denote this number as CCvalues.

With the known upper and lower bounds of the CC, i.e. CCJEB from
Equation 2.15 and CCDM from Equation B.8 in the appendix, the total
number of possible CC values can be computed as follows:

Definition 3.1.1 In total, there are CCvalues distinct CC values for a graph.
Any graph with a predefined number of vertices and edges has a subset CCvalues.
This subset is bounded by the CC of the JEB-graph from above, and the the
CC of the DM-graph from below. The difference between these two values
define the number of distinct CC values:

CCactual = CCvalues(CCJEB − CCDM)

Figure 3.1 shows how the number of distinct CC values changes for a
growing number of edges in a graph G.
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Figure 3.1: The total number of distinct CC values over the number of edges

3.1.2 Average Path Length

The number of distinct APL values can be calculated by the same principle
as the number of distinct CC values. By definition, the APL of a graph G
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is the sum of the APLs of the individual vertices to each other vertex. The
length of a path between any two vertices ranges in [1, v− 1], where v is the
number of vertices of the graph G.

As the smallest value for a path length between two vertices is 1, and
because a single vertex is connected to all other vertices, the smallest APL
of a single vertex is 1 · (v − 1). As the APL of the entire graph G is the
sum of the APLs of all vertices, the difference between two APL values of a
graph is at least 1

v(v−1)
. However, since the length of the path between any

two vertices has the same value, the difference between two APL values is,
at least, twice that value, i.e. 2

v(v−1)
.

Thus, for G, the smallest difference in APL is 2
100×99

= 1
4950

. This implies,
that for G, between APL = 2 and APL = 3 there are at most 4950 different
APL values. We call this number APLvalues, and for G, APLvalues = 4950.
As with CCvalues, this is a theoretical upper limit on the total number of
distinct APL values.
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Figure 3.2: Example of the number of different APL values for graphs with
an APL 2 and an APL 3.

Equation 2.14 defines the maximum APL as APLtail, and Equation 2.2
defines the minimum APL as APLstar. We can calculate the total number
of distinct APL values by determining the difference between APLtail and
APLstar, and multiplying that value with the number of APLvalues.
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Definition 3.1.2 The total number of distinct APL values is bounded by
the the APL of the Tail-graph, APLtail, and the APL of the Star-graph,
APLstar. The total number of distinct APL values is a superset of the number
of APLvalues, with the difference between APLtail and APLstar defining the
size of this superset:

APLactual = APLvalues(APLtail − APLstar)

The total number of possible APL values for different number of edges is
shown in Figure 3.3.
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Figure 3.3: Number of distinct APL values for a growing number of edges

3.1.3 Total resolution

With the number of distinct CC values and distinct APL values known from
Definition 3.1.1 and Definition 1.1.2, we can also calculate the total number
of distinct states a graph G can have.

Definition 3.1.3 The total number of distinct graph states of CC and APL
values is

CCactual · APLactual
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Figure 3.4: Number of CC and APL value combinations for a growing number
of edges

Note that there are combinations of values of CC and APL for which there
is no graph with the respective configuration. As described in Section 2.2.2,
the maximum CC can only exist if the APL is equal to the minimum value.
Thus, a graph with the maximum CC value and an APL value greater than
the minimum APL value does not exist.

Based on the observation that, for some states the corresponding graph
doesn’t exist, we conclude:

1. One state can correspond to multiple graphs: isomorphic graphs. Iso-
morphic graphs have the same CC and APL values, even though the
vertices might have different labels.

2. There is also a superclass of isomorphic graphs called isostatic graphs.
These graphs have the same CC and APL values, but are not iso-
morphic. An example of two isostatic graphs G1 and G2 is given in
Table 3.1. The example shows two JEB-graphs of 100 vertices and 300
edges. Note that both graphs also have a central vertex, with edges to
all 99 other vertices.
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G1 G2

Cliques and Edges per Total Cliques and Edges per Total
vertices per clique clique edges vertices per clique clique edges

2 cliques 15 30 1 clique 91 91
of 6 vertices of 14 vertices
17 cliques 10 170 5 cliques 10 50

of 5 vertices of 5 vertices
1 clique 1 1 20 cliques 3 60

of 2 vertices of 3 vertices

Table 3.1: The number of configurations for two isostatic JEB graphs of 100
vertices and 300 edges.

We cannot calculate the total number of possible graphs from the number
of possible states. Although we can calculate the total number of possible
combinations, in which a graph can be wired, this number would include
disconnected graphs, and thus overestimate the number of connected graphs.
The only measure to find the number of connected graphs, is presented in
the paper from 1959 by Erdős and Rényi [14], where they calculated the
probability that a graph is connected, when its edges are chosen randomly.
However, proving that this formula can also be applied to all possible graphs
lies outside of the scope of this thesis.
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Chapter 4

Crawler

To search for graphs in the statespaces, a crawler was developed. This
crawler was deployed through a custom framework, which scheduled jobs
on the DAS-3 [15] and DAS-4 [16] cluster sites. Consicely, each of these jobs
had a crawler instance which computed graphs with a specific CC or APL
value.

4.1 Basic crawler

The crawler is a “hill climber”, searching for a specific range of values from
either CC or APL. Actually, the crawler consists of three separate algorithms,
that are executed sequencially:

• Dot-algorithm: searches for a specific new dot, or graph with a certain
state, in the statespace.

• Line-algorithm: searches for a set of dots in the statespace by using
the Dot-algorithm, along a certain axis. We will refer to these sets as
lines.

• State-algorithm: Uses the Line-algorithm to create a sequence of lines
to construct a statespace.

The crawler saves both the obtained CC and APL values and the muta-
tions needed to achieve the new graph, leading to the capability to retrace
all steps and redraw all intermediate graphs.
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4.1.1 Dot-algorithm

The Dot-algorithm takes a graph as an input, and performs a mutation on the
graph by randomly rewiring a single edge. In particular, the Dot-algorithm
executes the following steps:

1. A graph is provided as input to the Dot-algorithm, see Figure 4.1a.

2. A random edge is removed from the graph, Figure 4.1b.

3. A random edge is added to the graph, see Figure 4.1c.

4. If the resulting graph is connected, its CC and APL are calculated, see
Figure 4.1d.

5. In the current implementation of the algorithm, 100 mutations of the
input graph are generated.

6. All generated graphs, that are connected, are then judged for the
searched criteria, i.e. either a specific CC or a specific APL value.

For example, a random graph is provided to the Dot-algorithm. 100
mutations are made of this graph, each of which is a random rewiring of a
single edge. Among the resulting 100 mutations, the connected graph with
the highest CC is selected. It will be a new dot in the statespace, as well as
a new input graph for the next execution of the Dot-algorithm.

As mentioned before, the Dot-algorithm can also be used with another
search criteria, e.g. the specified APL value, (instead of the highest or lowest
APL). Such a search criteria is used by the Line-algorithm.

4.1.2 Line-algorithm

With the Line-algorithm a set of dots is searched, by executing the Dot-
algorithm 1000 times. The algorithm uses the output from one execution of
the Dot-algorithm as the input for the next execution of the Dot-algorithm.
By doing this, a set of dots are placed in the statespace, and we call this set
of dots a line.

Concisely, the Line-algorithm executes the following steps:

1. The Line-algorithm uses an input graph to search for graphs with a
specified CC value, within a deviation of 0.010.

2. The Dot-algorithm is executed until a graph with the specified CC
value has been found.
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(a) The original graph (b) Selecting an edge to
remove

(c) Selecting a new edge
to add

(d) The resulting graph

Figure 4.1: The Dot-algorithm

3. The search criteria is then changed, to find the graphs with the highest
APL. Any discovered graph still has to remain within the deviation of
the specified CC value. Graphs discovered in such a way form a line of
dots with the same specific value of CC.

4. The Line-algorithm uses the Dot-algorithm for a total of 1000 times to
search for the graphs within the deviation of the given CC value.

5. The Line-algorithm produces an output graph as result. This should
have the specified CC value, within a deviation of 0.010, and the highest
APL. If no graph was found within the deviation, then the graph that
has the nearest CC value is used as output graph.

Thus, the algorithm produces either the best result, that is, a graph with
the highest APL within the deviation value, or the graph that is closest to
the desired CC value.

The following example illustrates the execution procedure of the Line-
algorithm for graphs of 300 edges.

1. The JEB-graph is provided as input to the Line-algorithm.
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2. Using the Dot-algorithm, a new graph is discovered that is as close as
possible to the desired CC value of 0.800. This new graph has a CC of
0.9650.

3. The Dot-algorithm is repeatedly executed until the resulting graph has
a CC of 0.8000 ± 0, 010. In the example, this happens 15 times, the
16th graph has a CC of 0.8039.

4. The Line-algorithm then searches for graphs with the highest APL.
Such graphs must have a CC of 0.8000± 0, 010. This set of dots forms
a line in the statespace.

5. Upon 984 iterations of the Dot-algorithm, the algorithm discovers a
graph with a CC 0.7905 and an APL of 5.1226. This is the output
graph, within the given deviation, and the highest APL.

The result of the Line-algorithm is presented in Figure 4.2, the line con-
sists of 1000 dots.

Figure 4.2: Result of the
Line-algorithm, search-
ing for a CC value of
0.800.
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4.1.3 State-algorithm

The final part of the crawler searches for graphs in specified parts of the
statespace. It does this by dividing the statespace in CC value intervals,
and using the Line-algorithm four times in each interval. Each interval has
a size of 0.001, and these intervals start from the lower bound of the CC
up to the upper bound. For example, 0.800, 0.799, 0.801, and so on. The
State-algorithm runs in each interval, and gets an input graph from the user,
and the desired CC value to search graphs for. This desired value is the same
as the interval value, e.g. the State-algorithm will search for graphs with a
CC value 0.800 in the interval 0.800.

The State-algorithm executes in the following steps:

1. The State-algorithm gets an input graph, and the CC interval for which
graphs with that CC value must be found.

2. The State-algorithm, with the input graph and the CC value, executes
the Line-algorithm.

3. The Line-algorithm searches for graphs with the CC value, by executing
the Dot-algorithm 1000 times. If such a graph is discovered, within the
error-margin of 0.01, the Line-algorithm will search for graphs with the
CC value of the discovered graph and the highest APL.

4. Such an execution of the Line-algorithm is repeated four times, where
every output of the previous execution is used as the input for the next
execution. The third and fourth execution search for graphs with the
CC value and the lowest APL.

Thus, the State-algorithm executes the Line-algorithm four times, result-
ing in 4000 dots. Each interval therefore consists of 4000 dots. The desired
CC value is now increased by the size of the interval, 0.001, and the State-
algorithm again uses the Line-algorithm to find graphs in that interval. This
continues until the state-algorithm reaches the upper bound of the CC value,
rounded up.

To illustrate this part of the crawler as well, an example of the State-
algorithm will now follow, searching in the intervals with the CC values of
0.800 and 0.801, with the JEB-graph as the input graph. In the example,
the State-algorithm searches for graphs with 100 vertices and 300 edges.

1. The State-algorithm starts searching for graphs with a CC of 0.800 ±
0, 01, using the JEB-graph as input-graph.
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2. The State-algorithm provides the JEB-graph as input to the Line-
algorithm.

3. The 16th graph found by the Line-algorithm has a CC of 0.8039. The
line-algorithm then searches for graphs with the highest APL, while
keeping the CC at 0.800± 0, 01.

4. After finding 1000 dots, the Line-algorithm produces a graph with a
CC of 0.7905 and an APL of 5.1226. Figure 4.3a illustrates this.

5. This graph is provided, by the State-algorithm, as input for the second
run of the Line-algorithm, which again looks for graphs with a CC
0.8000± 0.01, and the highest APL.

6. Once 1000 dots are found, the Line-algorithm produces a graph with a
CC of 0.7905, and an APL of 5.8378. Figure 4.3b illustrates this. The
newly discovered dots are in blue.

7. This graph is provided as input for the third execution of the Line-
algorithm. Again, the algorithm searches for graphs with a CC of
0.8000±0.01, but this time it searches for graphs with the lowest APL.

8. Upon the discovery of another 1000 dots, a graph with a CC of 0.7902
and an APL of 1.9394 was found by the Line-algorithm. Figure 4.3c
illustrates this. The newly discovered dots are in blue.

9. With this graph as input, the Line-algorithm is executed for the fourth
and final time, to search for graphs with a CC of 0.8000± 0.01 and the
lowest APL. Figure 4.3d illustrates this. The newly found dots are in
blue.

10. For the CC interval of 0.800, the State-algorithm executed the Line-
algorithm a total of four times. The State-algorithm then starts search-
ing for graphs in the CC interval of 0.801 ± 0, 01, reverting back to
step 1. Figure 4.3e illustrates this. The 4000 new dots of this interval
are in blue.

It is important to note that the State-algorithm can also be used to search
for specific APL values, and then minimizing and maximizing the CC values.
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(a) First line-algorithm (b) Second line-algorithm (c) Third line-algorithm

(d) Fourth line-algorithm (e) Next interval

Figure 4.3: Example showing 2 iterations of the State-algorithm.
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4.2 Grid framework

In order to use the crawler on the DAS-3 and DAS-4 sites, a framework
has been developed. It consists of: 1) a master server keeping track of the
calculation jobs, which are provided to the crawler instances, and 2) client
nodes, deployed on the DAS sites, to start the crawler instances and report
the job progress to the master server. We will first describe the jobs.

4.2.1 Jobs

A job is the information that the crawler needs to execute the state-algorithm.
In particular, a job consists of: 1) an ID for communication and bookkeeping
purposes, 2) the number of edges of the graphs to search for, and 3) the
initial graph that is used by the Line-algorithm. It specifies if the crawler
should look for graphs with a certain CC or APL value. Moreover, the input
also includes the range of values for the search, for example:

id=442187

edges=100

type=cpl

typestart=jeb

start=8.790

finish=8.790

4.2.2 Nodes

The crawler has been deployed on the DAS-3 and DAS-4 sites, grid com-
puter sites belonging to various academic institutions in the Netherlands.
The DAS, Distributed ASCI Supercomputer, sites are meant for research
purposes, and are now on their fourth generation, DAS-4, while DAS-3 re-
mains in (limited) operation.

The DAS-3 sites [15], launched in late 2006, are located at 5 Dutch insti-
tutions:

• Vrije Universiteit Amsterdam: 85 dual-CPU dual-core 2.4 Ghz AMD
Opteron DP 280 compute nodes. 10 nodes have been used for this
master project, for 40 crawler instances.

• Leiden University: 32 dual-CPU 2.6 Ghz AMD Opteron DP 252 com-
pute nodes. 10 nodes have been used, for 20 crawler instances.
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• University of Amsterdam: 41 dual-CPU dual-core 2.2 Ghz AMD Opteron
DP 275 compute nodes. 10 nodes have been used, for 40 crawler in-
stances.

• Delft University of Technology: 68 dual-CPU 2.4 Ghz AMD Opteron
DP 250 compute nodes. 10 nodes have been used, for 20 crawler in-
stances.

• The MultimediaN Consortium: 46 dual-CPU 2.4 Ghz AMD Opteron
DP 250 compute nodes. 10 nodes have been used, for 20 crawler in-
stances.

Overall, the DAS-3 sites contributed 140 crawler instances to the project.
Each crawler could run for 128 hours per week, for a total of 17,920 compute
hours per week for all crawlers. The DAS-3 crawlers ran for a total of 18
weeks.

The DAS-4 sites [16], launched in late 2010, are located 6 Dutch academic
institutions:

• Vrije Universiteit Amsterdam: 74 dual-CPU quad-core 2.4 Ghz com-
pute nodes. 15 nodes have been used for this master project, for a total
of 120 crawler instances.

• Leiden University: 16 dual-CPU quad-core 2.4 Ghz compute nodes. 5
nodes have been used, for 40 crawler instances.

• University of Amsterdam: 16 dual-CPU quad-core 2.4 Ghz compute
nodes. 10 nodes have been used, for 80 crawler instances.

• Delft University of Technology: 32 dual-CPU quad-core 2.4 Ghz com-
pute nodes. 10 nodes have been used, for 80 crawler instances.

• The MultimediaN Consortium: 36 dual-CPU quad-core 2.4 Ghz com-
pute nodes. 10 nodes have been used, for 80 crawler instances.

• ASTRON: 24 dual-CPU quad-core 2.4 Ghz compute nodes. 10 nodes
have been used, for 80 crawler instances.

The DAS-4 sites contributed 480 crawler instances to the project. Each
crawler could run for 108 hours per week, for a total of 51,840 compute hours
per week for all crawlers. The DAS-4 crawlers ran for a total of 32 weeks.

In total, 620 crawler instances have calculated approximately 2,085,120
hours in total.
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4.2.3 Server side

The master server, using MySQL to store the job data, keeps track of the
jobs that need to be calculated, and assigns them to crawler instances which
contact it. All crawler instances are started in a reservation on one of the
DAS clusters, and get the requested number of nodes. To start the reserva-
tion, the framework will contact the server and request a new time-slot to
reserve on the DAS cluster. After the reservation is granted at the DAS-site,
all instances will be started and all instances will contact the master-server.
For an instance to get a job, it has to contact the master server, which (using
a white-list) checks if the domain of the instance is allowed to request a job.
During the reservation, instances contact the master server to request a new
job, update the progress of the current job, and announce the end of a job.
Jobs can be assigned to a designated DAS cluster, or be assigned on a first
come, first serve basis.

Since the job data is kept in a MySQL database, a job will take a minimum
of 4 MySQL queries: checking the white-list, starting, updating and finalizing
a job.

4.2.4 Client side

An instance, running at one of the DAS nodes, proceeds to request a new
job, after finishing its currently assigned job. All instances have a designated
directory in which they store the results, and keep a copy of the crawler
executable. Due to the reservation policy on the DAS cluster and, thus,
limited execution time, all execution results (including intermediate ones)
are stored in files. In this way, only results of executions upon the expiration
of a reserved time on DAS cluster are lost.

All instances are started consecutively, with 10 second intervals, to pre-
vent the master-server of being overloaded with job-requests. The first
started instance, graph0, collects all results and sends them by scp to the
kits student server at the VU. It does so after completing its assigned job, at
most every 15 minutes, to ensure the that the kits server is not flooded with
SSH requests.

4.2.5 Flaws

Two major flaws associated with the framework have been identified and
corrected during the project. First, all instances would copy their results back
to the kits server by scp, prior to termination. This lead to a flood of SSH
requests, causing the SSH daemon at the kits server to become irresponsive,
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thereby preventing other users from logging in. This issue has been fixed by
ensuring that only a single instance at a site is allowed to copy results back.

Second, if the duration of the jobs was small enough, the master server
can potentially be swamped by the number of connection requests, and by
queries from its MySQL daemon. This is practically a DDoS attack by 620
instances on a single master server. If the master server is down, no jobs can
be assigned, leading to crawler instances stopping their work, wasting the
time of the DAS-reservation. This flaw has been fixed by identifying small
jobs1 and distributing them to a limited number of sites.

4.3 Scatterplot generation

In order to produce the scatterplots in the next section, all statespaces for
a particular number of edges were calculated a total of six times. Three of
those were done with the Line-algorithm looking for CC values (Figures 4.4a,
4.4b and 4.4c), and the other three with the Line-algorithm looking for APL
values (Figures 4.4d, 4.4e and 4.4f). For both sets of scatterplots, there were
three different starting points: (1) a randomly generated graph (Figures 4.4a
and 4.4d), (2) the JEB-graph (Figures 4.4b and 4.4e) and (3) the Tail-graph
(Figures 4.4c and 4.4f). An example of the combined result is shown in
Figure 4.5.

1Generally jobs with a high number of edges and looking for graphs with CC values
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Figure 4.5: Combination of the 6 previous scatterplots, showing the states-
pace of a graph of 300 edges.



Chapter 5

Crawler results

The crawler deployed on the DAS-3 and DAS-4 cluster sites, searched for
graphs with 100 vertices and a predefined number of edges: from the interval
[100, 4950] with a step of 50 edges. As mentioned in Section 4.3, the crawler
searched for graphs with specific CC and APL values, from three different
initial points: JEB-graphs, Tail-graphs and randomly generated graphs.
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Figure 5.1: The scatterplot of the random graphs with different number of
edges. Only connected graphs are selected from 10 million graphs, generated
by the crawler.
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5.1 Random graphs

One of the initial points of the crawler is a randomly generated graph. In
order to visualize such a graph, we plotted ten sets, each with a differ-
ent random seed, of 10 million random graphs for each of the statespaces
searched for. We recorded the number of disconnected graphs, to compare
it with the formula of Erdős and Rényi [14]1. We show these results for
100, 500, 750, 1000, . . . , 4750 edges in Figure 5.1. The larger versions of these
scatterplots for the edges [150, 500] with a step of 50 edges, can be found in
Appendix A.

Edges Erdős and Rényi Generated by crawler
100 0.00% 0%
150 0.69% 0.33%
200 16.02% 17.24%
250 50.98% 55.98%
300 78.05% 82.28%
350 91.28% 93.66%
400 96.70% 97.84%
450 98.77% 99.28%
500 99.55% 99.76%
550 99.83% 99.92%
600 99.94% 99.98%
650 99.98% 99.99%
700 99.99% 99.99%

750 and more 100.00% 100.00%

Table 5.1: Comparison between predicted values by Erdős and those found
experimentally.

As Table 5.1 shows, there is a difference between the values predicted
by Erdős and Rényi, and those found by generating ten sets of 10 million
graphs, each set with a different random seed. We speculate that this is due
to the formula of Erdős and Rényi being described as being for graphs with
any number of vertices, and also for graphs with a number of vertices greater
than 100. We further discuss this in Appendix C.

1These graphs were only generated, and did not use the Dot-algorithm.

50



5.2 Results

In the remainder of this section, we will show the results obtained by the
crawler. All generated graphs are plotted according to their CC and APL
values. The combined scatterplots are shown, for the graphs of 100, 250, 500,
750 . . ., 4750 and 4950 edges. Resulting scatterplots can be found at
http://www.phoib.net/uni/graphs

The crawler generated graphs, searching for graphs with specific CC val-
ues. The lower bound of these specific CC values was the minimal CC,
CCDM . The higher bound of these specific CC values was the maximal CC,
CCJEB. The lower and upper bound were seperated by CC intervals, each
0.001 wide. For each interval, the crawler searched for graphs. This was also
done for the APL, with the lower bound of the specific APL values being the
minimal APL, APLstar, and the higher bound the maximal APL, APLtail.
The lower and upper bound of the APL were seperated with APL intervals
of 0.01 wide.

None of the generated graphs exceeded the bounds of the CC and APL,
which were described in Chapter 2. The results in Figures 5.2b-5.2f show
that the shape of the statespace shifts to the right, in the same way as the
CC of the Tail-graph shifts to the right when more edges are added to it.
The results also show (e.g. in Figure 5.3d) that graphs with an APL higher
than a randomly generated graph and a CC 0 become less likely when more
edges are added to the graph. Also, Figure 5.3e show, that while graphs of
2500 edges with a CC 0 are theoretically possible, but were not found by the
crawler..

The same applies for the JEB-graphs. They were never found by the
crawler, when graphs were generated with an input graph which was not
a JEB-graph itself. Tail-graphs were also never found, when graphs were
generated with an input graph, other than a Tail-graph. This gives an insight
into the distribution of graphs within the statespace: that such specialized
graphs are very rare, compared to the generated graphs.
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Chapter 6

Conclusion

In this thesis, we have explored the space of simple, connected graphs of 100
vertices. We expressed a statespace of these graphs as the combination of
their CCs and APLs. Three different research questions were addressed: (1)
How does a statespace develop under a growing number of edges, (2) can
the lower and upper bounds of the statespace be identified, and (3) can the
number of states for graphs with a certain number of edges be described?
We can now answer these three questions.

Development of the statespace: This thesis produced an insight into
the development of the statespace of a graph of 100 vertices. Even with a
step of 50 edges, one can observe how the average shape of the statespace
develops, gradually shifting to the right under a growing number of edges.
This is in line with the randomly generated graphs, which CC also shifts
towards the right under a growing number of edges.

We can also expect the generated graphs to be a random sample by the
way the crawler generates its graphs. It performs a random walk through
the statespace, and even though the direction of the walk is dictated by the
crawler, its results still reflect the nature of a random walk. Combined with
the fact that neither a JEB or a Tail-graph was found by the crawler, this
would imply that there are very few, random paths through the statespace
to either a JEB or a Tail-graph.

Bounds of the statespace: We have conclusively shown the upper and
lower bounds of the statespace, and formulated the conditions under which
these bounds can be achieved. Both CC and APL have distinct upper and
lower bounds, in particular, the DM-graph and JEB graph for the CC, and
the Star-graph and Tail-graph for the APL.
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We have shown that the bounds for the APL as well as the upper bound
for the CC converge to a single point; though the convergence is more gradual
in case of the APL than of the CC. Except the upper bound of the CC, all
three bounds grow continuously, by adding single edges.

Size of the statespace: In general, the total number of simple, connected
graphs with 100 vertices in the entire statespace remains too large to be
calculated. We have shown the number of possible combinations of the CC
and APL, but we cannot calculate how many graphs each state has.

Future work: The graphs obtained from the crawler need to be studied
with respect to their degree distribution. This will introduce a new dimension
in which graphs can vary.

Furthermore, a new crawler has to be developed, which can not only
search for graphs with a specific value, but also quantify how many graphs
there are, with such a state. Such a crawler will give an insight into how
graphs are distributed inside a statespace.

Finally, theoretical research is needed into the number of graphs. Using
the formula from Erdős and Rényi, combined with Cayley’s formula[17] on
the number of trees, it should be able to formulate the number of graphs for
a predefined number of vertices and edges.
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Appendix A

Random starting points

This appendix presents scaled-up version of scatterplots of random starting
points, previously mentioned in Section 5.1. Each scatterplot shows con-
nected graphs, selected out of 10 million generated graphs. The scatterplots
are shown for (150, 200, . . . , 500) edges. The scatterplots for more than 500
edges can be found online at
http://www.phoib.net/uni/graphs

Figure A.1: Example of 10 million randomly chosen graphs at 150 edges.
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Figure A.2: Example of 10 million randomly chosen graphs at 200 edges.

Figure A.3: Example of randomly chosen graphs at 250 edges.
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Figure A.4: Example of randomly chosen graphs at 300 edges.

Figure A.5: Example of randomly chosen graphs at 350 edges.
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Figure A.6: Example of randomly chosen graphs at 400 edges.

Figure A.7: Example of randomly chosen graphs at 450 edges.
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Figure A.8: Example of randomly chosen graphs at 500 edges.

64



Appendix B

Distributed Map Graph
Formula

To explain the formula for the CC of the DM-graph, we introduce notations
for several sets of vertices and edges. Recall from Section 2.2.1, a DM-graph
is divided in two equal sized sets of vertices, L and R. Actually, both subsets
are of equal size when the number of vertices, v, are even, and are of unequal
size, otherwise. Also recall that, for a DM-graph of 1

4
v2 edges or more, no

edge can be added without increasing the CC. To minimize this increase of
the CC, we increase the degree of a single vertex to the maximum degree
v − 1. Because every vertex in L is connected to all the vertices in R, and
vice versa, adding an edge to a vertex in one set will change the CC of all
vertices in the other set. If only the vertices in L would get their degree
maximized, the CC of the set R would grow faster than if the vertex which
degree is maximized is alternated between sets L and R.

This method of alternating introduces several kinds of vertices and edges,
which all need to be explained. To aid in the explanation, we introduce two
new notations. Let Λ be a set of edges.

Definition B.0.1 Λ(A,B) is the set of edges, with one vertex from set A and
another vertex from set B. By definition, all vertices in set A are connected
to all vertices in B. The cardinality of this set is therefore |A| · |B|.

Let Θ be a set of vertices.

Definition B.0.2 Θ(A) is the set of vertices which are adjacent to the ver-
tices in set A.

Also, for notation purposes, we will refer to the vertex, of which the
degree is maximized, as a set. (It therefore gets an upper case Latin letter
as designation, and not a lower case Greek letter.)
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Set Cardinality Description Label on the example
V v Vertices all vertices in Figure B.1a
E e Existing edges all edges in Figure B.1a
L l Vertices on the left α, β and γ

side of the DM-graph in Figure B.1a
R r Vertices on the right δ, ε and ζ

side of the DM-graph in Figure B.1b
EL el Λ(L,L) αβ in Figure B.1a
ER er Λ(R,R) ζε in Figure B.1b
Vil 1 Vertex in L to which edges are added α in Figure B.1a
Vir 1 Vertex in R to which edges are added ζ in Figure B.1b
VL vl Λ(Vil, L)∪ αδ, αε, αζ (blue)

Λ(Vil, R) αβ (red) in Figure B.1a
VR vr Λ(Vir, L)∪ αζ, βζ, γζ (blue)

Λ(Vir, R) εζ(red) in Figure B.1b

V̂L v̂l Possible edges to Vil αγ (not shown)
= 1

2
vl(vl − 1) in Figure B.1a

V̂R v̂r Possible edges to Vir δζ (not shown)
= 1

2
vr(vr − 1) in Figure B.1b

M m Vertices with maximum degree α and ζ in Figure B.1c
ML ml ∀λ, λ ∈ L ∪M α in Figure B.1c
MR mr ∀λ, λ ∈ R ∪M ζ in Figure B.1c
Lc lc ∀λ, λ ∈ (Θ(Vil) ∪ L) \ML β in Figure B.1a
Rc rc ∀λ, λ ∈ (Θ(Vir) ∪R) \MR ε in Figure B.1b
Ln ln L \ (Lc ∪ML) γ in Figure B.1a
Rn rn R \ (Rc ∪MR) δ in Figure B.1a

Table B.1: Notations for the sets

α

β

γ

δ

ε

ζ

(a) The edges for Vil

α

β

γ

δ

ε

ζ

(b) The edges for Vir

α

β

γ

δ

ε

ζ

(c) M,ML and MR

Figure B.1: Examples to illustrate the sets
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We will now describe, for every set, the method to calculate the CC of a
vertex in that set. We will do this by

1. Identifying the neighbors of the vertex.

2. Determining the total number of possible edges between the neighbors
of the vertex.

3. Calculating the number of edges between those neighbors.

4. Determining the formula for the CC for such a vertex.

• For a vertex in M :

1. All other vertices in the graph are the neighbors of a vertex in M .
There are v − 1 neighbors in total.

2. The number of possible edges for the neighbors of such a ver-
tex is the maximum number of edges between those neighbors:
(v − 1)(v − 2)

2
.

3. These v − 1 neighbors require v − 1 edges to connect to a ver-
tex in M . All other edges in the graph are edges between these
neighbors: e− (v − 1).

4. The CC for a vertex in M is:

e− (v − 1)
(v−1)(v−2)

2

=
2
(
e− (v − 1)

)
(v − 1)(v − 2)

(B.1)

• For the vertex Vil:

1. It has vl neighbors, that can be divided into three sets:

– r vertices in R;

– lc vertices in Lc;

– ml vertices in ML.

2. For the number of possible edges, we have a special set: v̂l. See
Table B.1.

3. All of these neighbors of Vil have edges between each other.

– All vertices in R have er edges between them, for a total of er
edges.

– All vertices in Lc are connected to all vertices in R: this gives
a total of r · lc edges.
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– All vertices in ML are connected to all vertices in R: this gives
a total of r ·ml edges.

– All vertices in ML are also connected to the vertices in LC ,
for a total of ml · lc edges.

– All vertices in ML are also connected with each other, for a

total of
ml(ml − 1)

2
edges.

4. The formula for the CC for Vil is:

1

v̂l

(
er + r · lc + r ·ml +

ml(ml − 1)

2
+ml · lc

)
(B.2)

• The CC of the vertex Vir can be calculated similar to the vertex Vil,
but by using the opposite sets: where for the vertex V il sets were used
from set L, sets will now be used from set R:

1

v̂r

(
el + l · rc + l ·mr +

mr(mr − 1)

2
+mr · rc

)
(B.3)

• For the vertices in the Lc set:

1. There are three types of neighbors for a vertex in Lc:

– r vertices in R.

– ml vertices in the set ML.

– one Vil vertex.

2. The number of possible edges between all these neighbors is, ac-
cording to Equation 1.1,

(r +ml + 1)(r +ml)

2

3. All these neighbors have edges between them:

– All vertices in R have er edges between them: er edges.

– Between all ml vertices in ML there are
ml(ml − 1)

2
edges.

– The ml vertices also each have r edges towards R: r ·ml edges.

– The Vil vertex has r edges towards R: r edges.

for a total number of edges of:

er +
ml(ml − 1)

2
+ r ·ml + r = er + r(ml + 1) +

ml(ml − 1)

2

4. The CC for a vertex in LC is:(
er + r(ml + 1) +

ml(ml − 1)

2

)(
2

(ml + 1 + r)(ml + r)

)
(B.4)
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• Likewise, for vertices in the set Rc, the CC is:(
el + l(mr + 1) +

mr(mr − 1)

2

)(
2

(mr + 1 + l)(mr + l)

)
(B.5)

• Vertices in the set Ln are the same as the vertices in the set Lc, with
one exception: they are not connected to the Vil vertex. Thus:

1. The neighbors for a vertex in the set Ln are thus r vertices of R,
and ml vertices of ML.

2. The total number of possible edges between the neighbors of a
vertex in Ln are:

(r +ml)(r +ml − 1)

2

3. The total number of edges between the neighbors of a vertex in
Ln is the same as between the number of neighbors for a vertex
in Lc, minus the edges of the Vil vertex towards the set R:

er + r ·ml +
ml(ml − 1)

2

4. This makes the CC of a vertex in the set Ln:(
er +

ml(ml − 1)

2
+ r ·ml

)(
2

(ml + r)(ml + r − 1)

)
(B.6)

• Again, Rn differs only in all vertices being from the opposite set; thus,
the CC is:(

el +
mr(mr − 1)

2
+ l ·mr

)(
2

(mr + l)(mr + l − 1)

)
(B.7)
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Hence, putting the Equations B.1, B.2, B.3, B.4, B.5, B.6 and B.7 to-
gether, the Equation for the CC of a DM graph is then:

CCMin =
1

v

(
m

(
2
(
e− (v − 1)

)
(v − 1)(v − 2)

)
+

1

v̂l

(
er + r · lc + r ·ml +

ml(ml − 1)

2
+ml · lc

)
+

1

v̂r

(
el + l · rc + l ·mr +

mr(mr − 1)

2
+mr · rc

)
+

lc

(
er + r(ml + 1) +

ml(ml − 1)

2

)(
2

(ml + 1 + r)(ml + r)

)
+

rc

(
el + l(mr + 1) +

mr(mr − 1)

2

)(
2

(mr + 1 + l)(mr + l)

)
+

ln

(
er + r ·ml +

ml(ml − 1)

2

)(
2

(ml + r)(ml + r − 1)

)
+

rn

(
el + l ·mr +

mr(mr − 1)

2

)(
2

(mr + l)(mr + l − 1)

))
(B.8)
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Appendix C

Difference in randomly
generated graphs

As mentioned in Section 5.1, there is a noticeable difference between the
number of connected graphs as found by the crawler, and the number of
connected graphs as predicted by Erdős and Rényi. We speculate that this is
caused by the fact that we take a random sample from a finite set of graphs,
and that the formula, as described by Erdős and Rényi, describes an average.
Therefore, when the size of the set of graphs increases, any random sampling
will become closer to the number predicted. Thus, as the number of vertices
increases, we speculate that the number of connected graphs, as generated
by the crawler, will approach the number predicted by Erdős and Rényi.

To test this, we generated sets of graphs, for different number of vertices
and edges. We generated sets of graphs of 50, 100, 200, 500 and 1000 vertices.
Each set consists of a number of subsets with the same number of vertices,
but a different number of edges. Each subset consists of ten subsubsets of
10, 000 graphs, each with the same number of vertices and edges. Each of
these ten subsubsets used a different random seed for its pseudo-random
number generator.

To eliminate the possibility that the difference is caused by the pseudo-
random number generator itself, we used a different pseudo-random number
generator than the one used by the crawler. The crawler uses the standard C
random number generator, while the series of graphs in this appendix were
generated by a Java implementation of the Mersienne Twister. This accounts
for the minute difference in the set for 100 vertices.

71



Edges Generated in Java Erdős and Rényi Difference
50 0.00% 0.12% -0.12%
70 3.34% 4.78% -1.45%
90 29.29% 25.51% 3.78%
110 62.15% 54.13% 8.02%
130 83.01% 75.89% 7.12%
150 92.94% 88.34% 4.59%
170 97.09% 94.58% 2.51%
190 98.96% 97.53% 1.43%
210 99.57% 98.88% 0.69%
230 99.83% 99.50% 0.33%
250 99.95% 99.77% 0.18%
270 99.99% 99.90% 0.09%
290 99.99% 99.95% 0.04%
310 100.00% 99.98% 0.02%
330 100.00% 99.99% 0.01%
350 100.00% 100.00% 0.00%

Table C.1: Difference between connectedness for graphs of 50 vertices

Edges Generated in Java Erdős and Rényi Difference
100 0.00% 0.00% 0.00%
150 0.33% 0.69% -0.36%
200 17.19% 16.02% 1.17%
250 55.98% 50.98% 5.00%
300 82.16% 78.05% 4.11%
350 93.65% 91.28% 2.37%
400 97.81% 96.7% 1.11%
450 99.25% 98.77% 0.48%
500 99.74% 99.55% 0.19%
550 99.92% 99.83% 0.09%
600 99.98% 99.94% 0.04%
650 100.00% 99.98% 0.02%
700 100.00% 99.99% 0.01%
750 100.00% 100.00% 0.00%

Table C.2: Difference between connectedness for graphs of 100 vertices
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Edges Generated in Java Erdős and Rényi Difference
200 0.00% 0.00% 0.00%
250 0.00% 0.00% 0.00%
300 0.00% 0.00% 0.00%
350 0.13% 0.24% -0.11%
400 2.26% 2.57% -0.31%
450 11.22% 10.84% 0.38%
500 27.90% 25.99% 1.91%
550 47.43% 44.16% 3.27%
600 63.94% 60.91% 3.03%
650 76.79% 74.03% 2.76%
700 85.34% 83.33% 2.01%
750 91.28% 89.53% 1.75%
800 94.87% 93.51% 1.35%
850 96.82% 96.01% 0.80%
900 98.09% 97.56% 0.53%
950 98.88% 98.51% 0.37%
1000 99.34% 99.10% 0.24%

Table C.3: Difference between connectedness for graphs of 200 vertices

Edges Generated in Java Erdős and Rényi Difference
500 0.00% 0.00% 0.00%
750 0.00% 0.00% 0.00%
1000 0.00% 0.01% -0.01%
1250 3.37% 3.44% -0.07%
1500 30.15% 28.96% 1.19%
1750 64.89% 63.39% 1.50%
2000 85.65% 84.56% 1.09%
2250 94.53% 94.02% 0.51%
2500 97.99% 97.76% 0.23%
2750 99.27% 99.17% 0.10%
3000 99.72% 99.69% 0.03%
3250 99.89% 99.89% 0.00%
3500 99.96% 99.96% 0.00%
3750 99.99% 99.98% 0.01%
4000 99.99% 99.99% 0.00%

Table C.4: Difference between connectedness for graphs of 500 vertices
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Edges Generated in Java Erdős and Rényi Difference
1000 0.00% 0.00% 0.00%
1500 0.00% 0.00% 0.00%
2000 0.00% 0.00% 0.00%
2500 0.10% 0.12% -0.02%
3000 8.59% 8.38% 0.21%
3500 41.60% 40.18% 1.42%
4000 72.36% 71.50% 0.86%
4500 88.85% 88.39% 0.46%
5000 95.82% 95.56% 0.26%
5500 98.46% 98.34% 0.12%
6000 99.32% 99.39% -0.07%
6500 99.79% 99.77% 0.02%
7000 99.93% 99.92% 0.01%
7500 99.97% 99.97% 0.00%
8000 100.00% 99.99% 0.01%
8500 99.99% 100.00% -0.01%

Table C.5: Difference between connectedness for graphs of 1000 vertices

As the tables show, the difference between the number of connected
graphs as generated by Java, and the number of connected graphs as pre-
dicted by Erdős and Rényi, decreases when the number of vertices increases.
We consider a formal proof of this outside the scope of this thesis.
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